
Our understanding of the world is based on mental
models of objects and processes and their rela-

tionships. We think about the world using abstractions
that we must then organize into a coherent whole.
When working with complex, dynamically changing
systems, visual representations, such as drawings,
graphs, images, or animations, help us gain insight by
seeing patterns that wouldn’t be discernable in a
numeric representation. This is the essence of scientif-
ic visualization. We use similar ideas as part of the
debugging process to understand the complexities and
dynamics of software and hardware systems.

Although graphics and visualization programmers
already use a simple form of visual debugging to evalu-
ate their code when they view their output, debugging
is generally done using a conventional alphanumeric
debugger. This works well in many situations, but there
are some types of problems that can be more effective-
ly solved using visual debugging tools.

For example, imagine that you’re debugging the ener-
gy minimization of a particle system in which each par-
ticle’s energy is based on its location in space and the
number of nearby particles. This particle system grows

to thousands of particles and you want to know each
particle’s energy at any time interval over hundreds of
cycles. Two factors make a conventional debugger use-
less: the large number of particles and the need to cor-
relate the information spatially. So, what do you do?

Figure 1 shows our solution to this problem. We devel-
oped an alternate approach that uses our innate visual
pattern recognition skills as part of the debugging
process.1 Inspired by Huang’s2 use of color to visualize
energy distributions while untangling knots, we repre-
sented the particles graphically and color-coded them
by energy value. Thus far, we’ve applied this approach
to three domains: particle systems, cluster hardware
configurations, and physics codes using finite element
models. This debugging paradigm differs from software
or program visualization in that we don’t visualize soft-
ware elements such as procedures, message passing
between processors, or graph-based representations of
data structures (that is to say, boxes and arrows for
linked-list structures or binary trees).

In most application domains developers that use algo-
rithm visualization tools must make decisions about what
kind of visualization would best represent their code, and
they must, in effect, code this visualization in addition to
their application. For many developers, the time invest-
ment is too great compared to their perceived benefit, so
they return to a traditional debugging approach.3 Like
Tal and Dobkin,4 we believe that restricting the applica-
tion domain increases the ease of use of visual debuggers.
However, we go one step further by creating a visual tool
tailored to a particular application domain that can use
either captured data or simulation outputs and requires
no coding effort on the part of the user.

Model components
Despite many programming strategies to reduce com-

plexity, we still find ourselves faced with software that
doesn’t work as expected. For problems that involve
complex interactions between many model pieces or
components (such as the particles in Figure 1), corre-
lating multiple attributes (for example, energy, location,
number of neighbors) and understanding their evolu-
tion over time is often key to tracking down subtle log-
ical errors in the system. Looking at any one attribute
or piece of the model in isolation is usually insufficient.

The representation of these model components

Patricia Crossno
and David H.
Rogers

Sandia National
Laboratories

0272-1716/02/$17.00 © 2002 IEEE

Visual Debugging __________________________________

Visualization Viewpoints

Editor: Theresa-Marie Rhyne

6 November/December 2002

1 A particle system with 3,798 particles. Because of
color-coding, we can quickly locate four high-energy
particles (shown in yellow) correlated with their posi-
tions, relationships to each other (links are drawn in
cyan), and repulsive forces (indicated by their sizes).

depends on the application. Because each application
is based on a domain-specific abstraction, a visual rep-
resentation that closely matches that abstraction
reduces developers’ difficulty in translating between the
visualization and their internalized representation.

In each of the domains we’ve worked with, we’ve
focused our visualizations on simple representations of
the systems’ key conceptual components. For the parti-
cle system, we drew the particles as spheres and the
nearest-neighbor links as lines between particles. In the
cluster hardware application, we drew network switch-
es as cubes, switch ports as spheres on the cubes, and
network links as lines connecting the ports. In our most
recent work with finite element codes, we depict finite
elements as hexahedral cells and their nodes as spheres
on the corners of the cells. Additional detail added on
top of the central basis components provides a richer
representation of the system in each application.

Attributes
Although the components in each application’s model

differ, visualizing component attributes has a common
theme: components are drawn using various color-cod-
ing schemes to show attribute values. This approach is
powerful because the user can simultaneously see rela-
tionships between multiple aspects of the system.
Visualization of proximity relationships in combination
with values, especially when animated through time,
can increase the likelihood of discovering patterns or
anomalies. This is especially true when important fea-
tures are highlighted in bright colors, while less impor-
tant components are displayed using dark colors or are
culled from the image.

Interactivity plays an important role in viewing attrib-
utes, not only in switching between attributes, but also
by specifying the range of values that should be high-
lighted. In both the particle system and the cluster hard-
ware applications, the user inputs high and low values
that represent the expected range of normal values for a

particular attribute. The components whose values fall
within this range are color-coded between blue and red
with colors gradually transitioning from blue at the low
end, to purple in the middle, to red at the high end.
Components with values above the high end are typical-
ly drawn in yellow, while those with values below the low
end are highlighted in green or drawn in black. Figure 1
shows how this color-coding scheme displays the energy
values for each particle. The user can interactively query
component values by adjusting the range. Furthermore,
the colors used for highlighting the outlier values should
be user definable to aid color-blind users in selecting col-
ors that they can distinguish.

We can effectively color-code attributes in several
ways. If an attribute’s value varies continuously, the col-
oring scheme previously mentioned works well because
‘hotspots’ or other oddities stand out against a common
background. For other types of attributes, this smooth
shading approach isn’t useful. For example, the com-
ponents that we study often have an attribute that iden-
tifies the processor on which each was computed (this
is a useful attribute when studying parallel simulations).
When viewing data like these, it’s useful to see distinct
groups, so we need contrasting colors. Figure 2 shows an
example of this type of color encoding in which three
types of particles are shown by highly contrasting col-
ors. If there are many groups to be represented, it may
be difficult to find unique and visually distinct colors for
this type of visualization.

For the cluster hardware application shown in Figure
3, coloring processor ports by job identifier was chal-
lenging. Potentially, there can be a large number of jobs,
and the colors must be visually distinct. We found that
randomly selecting RGB component values frequently
led to similar colors being assigned to different jobs. Our
solution was to create a 3D Hilbert curve through the
RGB color cube and to randomly assign the evenly dis-
tributed vertices (shown as thickened points along the
curve in Figure 4, next page) to jobs.

When we started to apply these techniques to finite
element simulations, we had to revise our color-coding
scheme to fit with what physicists expected. Physicists
typically use a “Roy G. Biv” rainbow spectrum to visual-
ize value ranges, so the red to blue depiction of the range
didn’t make sense to them. To remember the spectral
color order, the “Roy G. Biv” mnemonic provides the first

IEEE Computer Graphics and Applications 7

2 Particles are colored by type. Red edge particles
move on the curve. Yellow corner particles are fixed.
Blue surface particles float over the surface. Blue parti-
cles on the top and bottom edges of the lowest cluster
reveal errors.

3 Model of cluster switches and processor ports for a cluster of 128
processors. Port color represents the job running on that processor. Black
ports are idle.

letters of the colors in order (red, orange, yellow, green,
blue, indigo, and violet). This type of coloring is now an
option in our software.

We represent attributes that are vector quantities with
scalable arrows. These can then be combined with scalar
attributes in the same image. Although this increases
the information content of the visualization, these
arrows can be interactively switched on and off so that
the user can control the visual clutter on the screen.
Visual clutter is a significant issue in presenting infor-
mation. On the one hand, you want to show multiple
attributes simultaneously so the user can see connec-
tions and interactions. On the other hand, once a cer-
tain threshold of visual overload is surpassed, users can’t
make sense of what they’re seeing.

Applications
In applying our visual debugging approach, we’ve cre-

ated applications targeted to three diverse problem
areas. The common theme uniting these problems is
that they all involve evaluating very large numbers of
variable values that are correlated in a spatial domain
and changing over time. The three applications we’ve
targeted are particle systems, switching hardware for
clusters of PCs, and physics simulation codes that use
finite elements.

Particle systems
We first used visual debugging while developing a par-

ticle system to find isosurfaces in volumetric data.5 The

central component in this application was the particle.
There were three types of particles, each of which could
move in different ways. During visual debugging, these
particles were drawn as color-coded spheres as shown
in Figure 2. Attributes colored by their value within a
range included energy (shown in Figure 1), surface cur-
vature, size (repulsive range), and age. The repulsive
range was also indicated by the particle’s size. The nor-
mal to the isosurface at the particle’s location was dis-
played using a vector, and particles that were ‘nearest
neighbors’ were connected with a line. Each of these
attributes was used to understand and debug particle
movements, repulsive and attractive force calculations,
and particle population. By understanding the details of
how the particles behaved, the programmer could make
useful changes to the code. In addition, these attributes
were used to evaluate the system’s convergence to deter-
mine when the isosurface was good enough for the algo-
rithm to terminate.

PC cluster hardware
We next applied these techniques to understand an

unusually high message failure rate in a cluster of PCs.6

Researchers were looking for a way to understand how
the cluster was behaving, so we modeled its switch hard-
ware and let them look for patterns in the distribution
of errors (bad packets, bad routes, dead routes, and
timeouts). Switches, ports, and network cables formed
the model’s components. By coloring the ports accord-
ing to their error counts and then correlating ports expe-
riencing high error counts over time with both routing
and job information, we traced part of the problem back
to errors generated and propagated during rebooting
subsections of the cluster.

Later, we expanded our model definitions to include
multiple planes and crossbar switches. Figure 5 is an
example of how large the models have now become.
Keeping up with the increasing complexity of the model
definitions has been a major obstacle. For the system to
remain useful, it must accurately reflect true hardware
configurations. Consequently, we removed any assump-
tions about regularity in port definitions or layout, and
virtually all aspects of the model are configurable. We’re
currently using the cluster tool to evaluate scheduling
and processor allocation strategies.

Finite element codes
Our current work is in the area of debugging physics

codes that use finite element models.7 In this context,
the central components are elements (or cells) and
nodes. Although finite element models can have a vari-
ety of cell types, we’ve concentrated on hexahedral ele-
ments. We’re now starting to work with adaptive mesh
refinement (AMR) grids.

Finite element models can contain millions of ele-
ments, so interior elements are obscured by exterior ele-
ments. This means that we can’t view all the cells
simultaneously. At this scale, the visual debugging
approach breaks down, and it becomes useful to auto-
matically search for features in each model. In the case
of the physics codes, elements whose shapes are highly
distorted signal the source of a problem, so these cells

Visualization Viewpoints

8 November/December 2002

4 Three-dimen-
sional Hilbert
curve through
RGB color cube.

5 The model is
a 1,792-proces-
sor cluster.
Boxes are
switches;
spheres are
network ports
colored by error
counts.
Switches with
no errors have
been culled.

are extracted. To provide context when viewing these
bad cells, we also extract a clump of cells around them
and planes of cells that pass through them. These sub-
sets are then viewed using color-coding to display
attribute values such as pressure or the percentage of a
given material in the cell. In AMR grids there’s an
attribute that measures the simulation’s need for the cell
to subdivide. Vector arrows show quantities such as the
velocity or acceleration at a node.

Figures 6 through 9 are views of an AMR grid sub-
set from a simulation of a rod smashing into a plate.
The rod is represented as a cylindrical quarter section.
The region where the rod impacts the plate has two
levels of refinement. Normally, we expect all cells to be
box-shaped, but the bad cells are distorted because at
least one vertex has moved unexpectedly. We searched
the full model for bad cells and found two clusters of
them, which are shown in pink in Figure 6. When that
central node is incorrect, all eight cells sharing that
node are distorted. That’s what has happened in both
the clusters found by the automated search. Some of
the distorted elements have negative volumes since
the cell faces are interpenetrating. These are inverted
elements.

In Figure 6, each node’s velocity vector is shown with
a black arrow. Note that the velocity vectors originating
from the displaced nodes are anomalous compared to
the regular pattern of the other vectors.

Figure 7 shows the underside of the same data. The
velocity vectors have been removed, and the culling
operation has been changed to display both the invert-
ed elements and those elements having some amount
of the rod material. The percentage of the element con-
taining the rod material is shown using the spectrum
coloration described earlier, with red showing high con-
centrations and blue showing low concentrations. The

IEEE Computer Graphics and Applications 9

6 Cells extracted from a simulation of a rod impacting
a plate include two clusters of inverted elements (in
pink). The cells are on the boundary where the rod (a
quarter-circle) meets the plate. Vectors display velocity
at each node.

7 Elements are colored by the percentage of rod mate-
rial, with red as high and blue as low. Pink indicates no
rod material. The grid subdivision is directly below the
inverted elements.

8 Elements colored by pressure. The pink and red
elements, representing zero and high-pressure values,
are anomalous with respect to the pressure values of
their neighbors.

9 Elements are colored by their need to subdivide. Red
marks a hotspot where cells need more refinement.

pink of the inverted clusters indicates that there’s vir-
tually no rod material in any of those elements.

Three interesting features are immediately apparent
in Figure 7. First, the rod material is unevenly distrib-
uted in the area to the left of and below the inverted cells
(there are orange and red elements where we would
expect yellow elements). Second, the inverted elements
have no rod material within them. Third, cell subdivi-
sion begins in the layer of elements immediately
beneath the inverted elements.

Figure 8 shows a closer view of the inverted cells in
Figure 7. This time the cells are colored using the pres-
sure attribute. The contextual plane of cells has been
removed and velocity vectors are displayed. The prox-
imity of the pink (zero-pressure) and red (highest-pres-
sure) elements in the bottom layer is anomalous and is
indicative of the problem in this region. In Figure 9 the
same cells are colored according to their need to subdi-
vide. Elements with low values have been culled except
for the inverted elements. Note that a hotspot appears in
the same area as in Figures 7 and 8.

These features lead us to believe that the problem was
created by the incorrect propagation of a velocity vec-
tor from a node whose elements contained the materi-
al (and hence had a velocity) to a node shared by
elements outside the rod. This propagation appears to
have happened during the grid subdivision. The com-
bination of the velocity with elements of essentially zero
mass led to the inversion of the elements. Although the
inverted cell was anomalous, it was the context around
that cell that provided the indications of where the prob-
lem existed in the code.

Conclusions
Visual debugging isn’t a novel idea. Scientists use

visualization indirectly to find bugs when simulation
results are rendered. However, scientific visualization
techniques hinder the debugging process because they
hide the underlying data structures used to generate the
visualization. For instance, isosurfaces and direct ren-
derings of volumetric data often create the illusion that
the data are continuous rather than sampled. These
techniques suppress the cell or processor boundaries.
But for debugging purposes, the structures should be
explicitly shown, and the developer should be able to
interactively query structures for detailed information
about their contents.

We’ve shown that visual debugging provides insights
into certain types of problems that aren’t available
through conventional debugging approaches. Although
the components used by each of the described applica-
tions differ, they all represent models using simple
abstractions, such as boxes, spheres, and lines. It’s essen-
tial to provide these simple abstractions while retaining
the key details within them. Abstracting the model lets

users focus on seeing patterns and anomalies in the
attributes of the model without being distracted by
unimportant or unintentional features.

We’re continuing to explore techniques for abstract-
ing attributes. In particular, we need to find an intuitive
way to represent tensor quantities. As we represent more
complex quantities, it becomes more difficult to design
useful representations. �

Acknowledgments
We want to thank Rena Haynes, Eric Russell, Vitus

Leung, and Rachel Rubin for their work on the switch
hardware application. Thanks to Daniel Carroll for the
finite element data and help on the Visual Tools project.
The Department of Energy’s Mathematics, Information,
and Computer Science Office funded this research. The
work was performed at Sandia National Laboratories.
Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-
AC04-94AL85000.

References
1. P. Crossno and E. Angel, “Visual Debugging of Visualization

Software: A Case Study for Particle Systems,” Proc. Visual-
ization 1999, ACM Press, New York, 1999, pp. 417-420.

2. M. Huang et al., “Untangling Knots by Stochastic Energy
Optimization,” Proc. Visualization 1996, ACM Press, New
York, 1996, pp. 279-286.

3. S. Mukherjea and J. Stasko, “Toward Visual Debugging:
Integrating Algorithm Animation Capabilities within a
Source-Level Debugger,” ACM Transactions on Computer-
Human Interaction, vol. 1 no. 3, Sept. 1994, pp. 215-244.

4. A. Tal and D. Dobkin, “Visualization of Geometric Algo-
rithms,” IEEE Transactions on Visualization and Computer
Graphics, vol. 1, no. 2, June 1995, pp. 194-204.

5. P. Crossno and E. Angel, “Isosurface Extraction Using Par-
ticle Systems,” Proc. Visualization 1997, ACM Press, New
York, 1997, pp.495-498.

6. P. Crossno and R. Haynes, “Case Study: Visual Debugging
of Cluster Hardware,” Proc. Visualization 2001, ACM Press,
New York, 2001, pp. 429-432.

7. P. Crossno, D.H. Rogers, and C.J. Garasi, “Case Study: Visu-
al Debugging of Finite Element Codes,” to appear in Proc.
Visualization 2002, ACM Press, New York, 2002.

Readers may contact the authors by emailing Patricia
Crossno at pjcross@sandia.gov or David H. Rogers at
dhroger@sandia.gov.

Readers may contact department editor Theresa-Marie
Rhyne by email at tmrhyne@ncsu.edu.

Visualization Viewpoints

10 November/December 2002

